Numerical Modelling and Experimental Testing of the Coronary Artery Stent Graft
Abstract
Background: Coronary artery perforations following minimally invasive diagnostic and therapeutic procedures require the urgent treatment due to the high risk of death. The implantation of a coronary stent graft is the strategy of choice to treat free perforations. Coronary stent grafts are covered self-expanding stents used to seal the damaged vascular wall by the external membrane.
Aim: to perform numerical and experimental investigation of promising polymeric materials that can be used for manufacturing the membrane for the coronary stent graft.
Methods: The study design was subdivided into two stages: stage 1 – assessment of the physical and mechanical properties of potential polymers (polytetrafluoroethylene, styrene-isobutylene-styrene, polyvinyl alcohol) and stage 2 – numerical modeling of the biomechanical response to the coronary stent graft functional diameter designing. The properties of the selected polymers were assessed with a Zwick/Roell-2.5H universal testing machine (Zwick/Roell, Germany) using uniaxial tensile testing mode. Numerical modeling was performed by the finite element method in Abaqus/CAE software (Dassault Systemes, France) with an increment in the graft diameter of 50% to the original one.
Results: Styrene-isobutylene-styrene copolymer demonstrated the greatest tensile strain with the elongation at break of 744.9 [737.0-837.8]% against initial size. Other polymers showed significantly lower tensile amplitudes. Polytetrafluoroethylene and polyvinyl alcohol samples broke when an elongation of 274.4 [270.9-280.4]% and 384.9 [313.4-390.6]% was reached. Numerical modeling for all materials showed moderate von Mises stress amplitudes, not exceeding the tensile strength. Polytetrafluoroethylene achieved the maximum stress of 7.50 MPa, styrene-isobutylene-styrene copolymer – 2.80 MPa, and polyvinyl alcohol – 0.08 MPa.
Conclusion: All the studied materials showed promising results and may be considered for manufacturing the stent graft membrane. However, styrene-isobutylene-styrene copolymer showed the beneficial properties among the rest. Based on our findings, it is rationale to focus on styrene-isobutylene-styrene copolymer and use it for the further prototyping.
About the Authors
K. Yu. KlyshnikovRussian Federation
Klyshnikov Kirill Yu., Ph.D., researcher at the Laboratory of Novel Biomaterials, Research Institute for Complex Issues of Cardiovascular Diseases
6, Sosnovy Blvd., Kemerovo, 650002
E. A. Ovcharenko
Russian Federation
Ovcharenko Evgeny A., Ph.D., Head of the Laboratory of Novel Biomaterials, Research Institute for Complex Issues of Cardiovascular Diseases
6, Sosnovy Blvd., Kemerovo, 650002
M. A. Rezvova
Russian Federation
Rezvova Maria A., researcher assistant at the Laboratory of Novel Biomaterials, Research Institute for Complex Issues of Cardiovascular Diseases
6, Sosnovy Blvd., Kemerovo, 650002
T. V. Glushkova
Russian Federation
Glushkova Tatyana V., Ph.D., senior researcher at the Laboratory of Novel Biomaterials, Research Institute for Complex Issues of Cardiovascular Diseases
6, Sosnovy Blvd., Kemerovo, 650002
L. S. Barbarash
Russian Federation
Barbarash Leonid S., M.D., Ph.D., Professor, chief researcher at the Research Institute for Complex Issues of Cardiovascular Diseases
6, Sosnovy Blvd., Kemerovo, 650002
References
1. Shaukat A, Tajti P, Sandoval Y, Stanberry L, Garberich R, Nicholas Burke M, Gössl M, Henry T, Mooney M, Sorajja P, Traverse J, Bradley SM, Brilakis ES. Incidence, predictors, management and outcomes of coronary perforations. Catheter Cardiovasc Interv. 2019;93(1):48–56. https://doi.org/10.1002/ccd.27706.
2. Staferov AV, Sorokin AV, Dundua DP, Konev AV, Voronin SV, Provodnikov AYa. Perforation of the left main coronary artery during left coronary artery revascularization. Russian Journal of Endovascular Surgery 2020;7(1S):262-270. (In Russ.)
3. Hirai T, Nicholson WJ, Sapontis J, Salisbury AC, Marso SP, Lombardi W, Karmpaliotis D, Moses J, Pershad A, Wyman RM, Spaedy A, Cook S, Doshi P, Federici R, Nugent K, Gosch KL, Spertus JA, Grantham JA; OPEN-CTO Study Group. A Detailed Analysis of Perforations During Chronic Total Occlusion Angioplasty. JACC Cardiovasc Interv. 2019;12(19):1902–1912. https://doi.org/10.1016/j.jcin.2019.05.024.
4. Parsh J, Seth M, Green J, Sutton NR, Chetcuti S, Dixon S, Grossman PM, Khandelwal A, Dupree JM, Gurm HS. Coronary artery perforations after contemporary percutaneous coronary interventions: Evaluation of incidence, risk factors, outcomes, and predictors of mortality. Catheter Cardiovasc Interv. 2017;89(6):966–973. https://doi.org/10.1002/ccd.26917.
5. Fejka M, Dixon SR, Safian RD, O'Neill WW, Grines CL, Finta B, Marcovitz PA, Kahn JK. Diagnosis, management, and clinical outcome of cardiac tamponade complicating percutaneous coronary intervention. Am J Cardiol. 2002;90(11):1183–1186. https://doi.org/10.1016/S0002-9149(02)02831-X.
6. Von Sohsten R, Kopistansky C, Cohen M, Kussmaul WG 3rd. Cardiac tamponade in the “new device” era: Evaluation of 6999 consecutive percutaneous coronary interventions. Am Heart J. 2000;140(2):279–283. https://doi.org/10.1067/mhj.2000.107996.
7. Semenov VYu, Samorodskaya IV. Dynamics of the number of myocardial revascularization operations in some countries in comparison with the Russian Federation in 2000–2018. Complex Issues of Cardiovascular Diseases. 2021;10(4):68-78. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-4-68-78
8. Danek BA, Karatasakis A, Tajti P, Sandoval Y, Karmpaliotis D, Alaswad K, Jaffer F, Yeh RW, Kandzari DE, Lembo NJ, Patel MP, Mahmud E, Choi JW, Doing AH, Lombardi WL, Wyman RM, Toma C, Garcia S, Moses JW, Kirtane AJ, Hatem R, Ali ZA, Parikh M, Karacsonyi J, Rangan BV, Khalili H, Burke MN, Banerjee S, Brilakis ES. Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention. Am J Cardiol. 2017;120(8):1285–1292. doi: 10.1016/j.amjcard.2017.07.010.
9. Litvack F, Eigler N, Margolis J, Rothbaum D, Bresnahan JF, Holmes D, Untereker W, Leon M, Kent K, Pichard A. Percutaneous excimer laser coronary angioplasty: Results in the first consecutive 3,000 patients. J Am Coll Cardiol. 1994;23(2):323–329. doi: 10.1016/0735-1097(94)90414-6.
10. Al-Mukhaini M, Panduranga P, Sulaiman K, Riyami AA, Deeb M, Riyami MB. Coronary perforation and covered stents: An update and review. Hear Views. 2011;12(2):63–70. doi: 10.4103/1995-705X.86017.
11. Jacob D, Savage MP, Fischman DL. Novel Approaches to Coronary Perforations. JACC Case Reports. 2022;4(3):142–144. doi: 10.1016/j.jaccas.2021.12.019.
12. Ekici B, Erkan AF, Kütük U, Töre HF. Successful Management of Coronary Artery Rupture with Stent-Graft: A Case Report. Case Rep Med. 2014;2014:1–4. doi: 10.1155/2014/391843.
13. Chen S, Lotan C, Jaffe R, Rubinshtein R, Ben-Assa E, Roguin A, Varshitzsky B, Danenberg HD. Pericardial covered stent for coronary perforations. Catheter Cardiovasc Interv. 2015;86(3):400–404. doi: 10.1002/ccd.26011.
14. Araki M, Hikita H, Sudo Y, Hishikari K, Takahashi A. Restenosis of a Polytetrafluoroethylene-Covered Stent Visualized by Coronary Angioscopy and Optical Coherence Tomography: A Case Report. Int J Angiol. 2020;29(01):058–062. doi:10.1055/s-0039-1685510.
15. Barbero U, Cerrato E, Secco GG, Tedeschi D, Belliggiano D, Pavani M, Moncalvo C, Tomassini F, De Benedictis M, Doronzo B, Varbella F. PK Papyrus coronary stent system: the ultrathin struts polyurethane-covered stent. Future Cardiol. 2020;16(5):405–411. doi: 10.2217/fca-2020-0022.
16. Hu K, Li Y, Ke Z, Yang H, Lu C, Li Y, Guo Y, Wang W. History, progress and future challenges of artificial blood vessels: a narrative review. Biomater Transl. 2022;3(1):81–98. doi: 10.12336/biomatertransl.2022.01.008.
17. Alexandre N, Ribeiro J, Gärtner A, Pereira T, Amorim I, Fragoso J, Lopes A, Fernandes J, Costa E, Santos-Silva A, Rodrigues M, Santos JD, Maurício AC, Luís AL. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies. J Biomed Mater Res Part A. 2014;102(12):4262–4675. doi: 10.1002/jbm.a.35098.
18. Wang Q, McGoron AJ, Bianco R, Kato Y, Pinchuk L, Schoephoerster RT. In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J Heart Valve Dis. 2010;19(4):499–505.
19. Hassan CM, Peppas NA. Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromolecules. 2000;33(7):2472–2479. doi: 10.1021/ma9907587
20. Bonsignore C. Open Stent Design: Design and analysis of self expanding cardiovascular stents. , SC Creat Indep Publ Platf. 212AD;94. doi: 10.6084/M9.FIGSHARE.95614.
21. Lewandowski JJ, Varadarajan R, Smith B, Tuma C, Shazly M, Vatamanu LO. Tension and fatigue behavior of 316LVM 1×7 multi-strand cables used as implantable electrodes. Mater Sci Eng A. 2008;486(1–2):447–454. doi: 10.1016/j.msea.2007.11.016
22. Aziz S, Morris JL, Perry RA, Stables RH. Stent expansion: a combination of delivery balloon underexpansion and acute stent recoil reduces predicted stent diameter irrespective of reference vessel size. Heart. 2006;93(12):1562–1566. doi: 10.1136/hrt.2006.107052
23. Morrison TM, Dreher ML, Nagaraja S, Angelone LM, Kainz W. The Role of Computational Modeling and Simulation in the Total Product Life Cycle of Peripheral Vascular Devices. J Med Device. 2017;11(2):024503. doi: 10.1115/1.4035866
24. Morrison TM, Pathmanathan P, Adwan M, Margerrison E. Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA’s Office of Science and Engineering Laboratories. Front Med. 2018;5:241. doi: 10.3389/fmed.2018.00241
25. Ardatov KV, Nushtaev DV. Deformation Characteristics of Coronary Stents of the Matrix and Continuous Sinusoidal Types in Free Expansion: Computer Simulation. Sovrem Tehnol v Med. 2018;10(2):31–36. doi: 10.17691/stm2018.10.2.03
26. Prendergast PJ, Lally C, Lennon AB. Finite element modelling of medical devices. Med Eng Phys. 2009;31(4):419. doi:10.1016/j.medengphy.2009.03.002
27. Oveissi F, Naficy S, Lee A, Winlaw DS, Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio. 2020;5:100038. doi: 10.1016/j.mtbio.2019.100038
28. Rezvova MA, Ovcharenko EA, Nikishev PA, Kostyuk SV, Glushkova TV, Trebushat DV, Chernonosova VS, Shevelev GYu, Klyshnikov KYu, Kudryavtseva YuA, Barabash LS. Prospects for Using Styrene-Isobutylene-Styrene (SIBS) Triblock Copolymer as a Cusp Material for Leaflet Heart Valve Prostheses: Evaluation of Physicochemical and Mechanical Properties. Russ J Appl Chem. 2019;92(1):9–19. doi: 10.1134/S1070427219010026.
29. Fedorchenko AN, Protopopov AV, Osiev AG, Tupikin RS, Bukhtoyarov AYu, Shmatkov MG, Lyaskovskiy KO, Korzh DA, Volkolup OS, Usachev AA, Lazebny PA, Smolinaet EG. Impact of stent implantation pressure in coronary arteries on early and long-term results of percutaneous coronary interventions. International Journal of Interventional Cardioangiology. 2008;14:86–87.
Review
For citations:
Klyshnikov K.Yu., Ovcharenko E.A., Rezvova M.A., Glushkova T.V., Barbarash L.S. Numerical Modelling and Experimental Testing of the Coronary Artery Stent Graft. Minimally Invasive Cardiovascular Surgery. 2023;2(1):57-66. (In Russ.)